Чудесный разговор

Полезная информация о вашем здоровье

Глобула белка

Структура белка: введение для айтишников

Приятно видеть, что хабравчане регулярно интересуется другими предметными областями – например, биологией (более конкретно – структурой и функцией биологических макромолекул). Однако некоторые посты (например, этот), вызывают у специалиста просто физическую боль из-за обилия совершенно диких фактологических ошибок. В этом посте мне хочется рассказать о структуре и функции белка. О том, что мы знаем и о том, чего не знаем, а так же об имеющихся в этой области вычислительных задачах, требующих решения и интересных IT-специалистам. Постараюсь рассказывать сжато и тезисно, чтобы информации было больше, а воды – меньше. Всех, интересующихся структурой белков, прошу под кат, там очень много букв.

1. Почему белки важны?

Как сказал Фридрих Энгельс, “Жизнь есть способ существования белковых тел”. В 19 веке еще не знали о роли ДНК в наследовании генетической информации, но утверждение дяди Фридриха в значительной мере справедливо до сих пор – основную работу в наших клетках совершают именно белки. Это и поддержание структуры (формы клеток), и химический катализ, и моторная функция (сокращение мышц, например), и транспорт (скажем, белок гемоглобин переносит кислород из легких в ткани и углекислый газ в обратном направлении) и сложные регуляторные функции по поддержанию постоянства внутренней среды (скажем, белковые гормоны и всякие внутриклеточные регуляторные системы) и многие другие. Словом, если в нашем организме что-то происходит, в это обязательно вовлечены белки (хотя и не только они).

2. Что такое белок?

С химической точки зрения белок – это линейный (неветвящийся) полимер, состоящий из монотонно повторяющихся одинаковых блоков «основной цепи», к которым приделаны различные «боковые группы». Так как блоки основной цепи несимметричны, вся полипептидная цепь белка имеет направление, различают N- и C-конец полипептидной цепи.

Длина цепи – от 70 до более чем 1000 мономеров (аминокислотных остатков), средняя длина для высших организмов – примерно 500-600 аминокислотных остатков, для бактерий эта величина будет меньше, скорее 300-400 остатков. Всего в природе существует 20 стандартных аминокислот, одинаковых и для бактерии и для человека, то есть из основной цепи могут торчать 20 разных боковых групп.

(Тут возможна поправка – некоторые химические группы могут быть модифицированны после синтеза белка, например, фосфорилированы. Однако это не рассматривается как другая аминокислота, а рассматривается как продукт модификации исходной. Так же у высших организмов возможно встраивание двух неканонических аминокислот, но это редкое событие. То есть, строго говоря, разных аминокислот 22, из них 20 основных и 2 редкие, плюс некоторые боковые группы могут быть изредка химически модифицированы).
Из поколения в поколение генетическая информация передается в виде ДНК, в ней есть так называемые «белок-кодирующие области». В этих местах ДНК однозначным образом (для ботанов – с точностью до альтернативного сплайсинга и редактирования РНК) закодирована информация о линейной последовательности аминокислот для синтеза данного белка, плюс в клетке есть соответствующие машины, способные синтезировать белок по информации, изначально закодированной в ДНК.

Так как белок – линейный полимер, собранный из 20 стандартных мономеров, его так называемую «первичную структуру» легко представить в виде строки, например так:
>small ubiquitin-related modifier 3 precursor MSEEKPKEGVKTENDHINLKVAGQDGSVVQFKIKRHTPLSKLMKAYCERQG LSMRQIRFRFDGQPINETDTPAQLEMEDEDTIDVFQQQTGGVPESSLAGHSF
Это аминокислотная последовательность маленького человеческого белка в формате FASTA, первая строчка, начинающаяся с «>», описывает его название, после чего следует последовательность аминокислот в соответствии со стандартной кодировкой (например, М –метиони, S – серин и тд, всего 20 букв стандартного однобуквенного кода), слева – N-конец белка, справа – его С-конец. Для разных белков длина строки будет очевидно разной, так как белки имеют разную длину. Последовательности всех известных белков можно найти в открытом доступе здесь: www.ncbi.nlm.nih.gov

3. Структура белка

Хорошо, с первичной структурой разобрались, но разве белок работает в развернутом линейном виде? Конечно нет. Тут надо заметить, что со структурной точки зрения есть разные классы белков: глобулярные, мембранные и фибриллярные. Мембранные белки, как следует из названия, живут только в клеточных мембранах, для стабилизации их структуры нужно особое окружение мембраны, мы не будем их рассматривать в этом обзоре. Фибриллярные белки имеют простое регулярное строение, похожи на вытянутые волокна, они не растворимы в воде и выполняют структурные функции (например, из кератина состоят волосы, к фибриллярным белкам относится белок из натурального шёлка). Недавно стали выделять класс разупорядоченных белков – белков, не обладающих постоянной трехмерной структурой, либо приобретающих ее только на короткое время при взаимодействии с другими белками. Наиболее интересный с практической точки зрения класс белков, который мы и будем рассматривать – глобулярные водорастворимые белки, к этому классу относится большинство белков.
Линейная полипептидная цепь в воде способна самопроизвольно сворачиваться в сложную трехмерную структуру (глобулу) и только в таком свернутом виде белки могут выполнять химический катализ и прочую интересную работу. Поэтому нам принципиально важно знать именно трехмерную укладку белка, так как только на этом уровне становится понятно, как белок работает.
Вопрос: сколько трехмерных структур соответствует конкретному белку?
Ответ: Одна, с точностью до небольшой подвижности маленьких «разупорядоченных» петель. Известно ровно одно исключение, когда одной последовательности соответствуют 2 достаточно разные структуры, это прионы.
Вопрос: Почему у белка только одна трехмерная структура?
Ответ: для химического катализа нам нужно расположить соответствующие химические группы строго определенным образом в пространстве. Для этого нужна жесткая структура. То есть весь белок должен быть жестким, чтобы поддерживать химические группы аминокислот активного центра в нужных местах (в реальности многие белки состоят из двух и более жестких частей, которые могут двигаться друг относительно друга, это нужно для регуляции активности белка (аллостерическая регуляция), чтобы некий сигнал мог включать и выключать химическую активность белка-фермента). Чтобы структура была жесткой и стабильной, природа позаботилась о том, чтобы структура каждого белка соответствовала энергетическому минимуму данной системы атомов и этот минимум был настолько глубоким, чтобы белок из него не «выпрыгнул». Все другие, паразитные структуры, обладают большей энергией и белок все равно сваливается в энергетический минимум, соответствующий нативной структуре.


Вопрос: на чем держится трехмерная структура белка?
Ответ: если коротко, то в основном на большом количестве нековалентных взаимодействий. В принципе, химические группы белка могут образовывать: (1) водородную связь, эти группы есть и в основной цепи и у некоторых боковых групп, (2) ионную связь – электростатическое взаимодействие между разноименно заряженными боковыми группами, (3) Ван-дер-Ваальсово взаимодействие и (4) гидрофобный эффект, на котором держится общая структура белка. Суть в том, что в белке всегда есть гидрофобные ароматические остатки, им энергетически невыгодно контактировать с полярными молекулами воды, а выгодно «слипнуться» друг с другом. Таким образом, при сворачивании белка гидрофобные группы выталкиваются из водного окружения, «слипаясь» друг с другом и формируя «гидрофобное ядро», а полярные и заряженные группы, наоборот, стремятся в водное окружение, формируя поверхность белковой глобулы. Так же (5) боковые группы двух остатков цистеина могут образовать между собой дисульфидный мостик – полноценную ковалентную связь, жестко фиксирующую белок.
Соответственно, все аминокислоты делятся на гидрофобные, полярные (гидрофильные), положительно и отрицательно заряженные. Плюс цистеины, способные образовывать ковалентную связь между собой. Особыми свойствами обладают глицин – у него отсутствует боковая группа, сильно ограничивающая конформационную подвижность других остатков, поэтому он может очень сильно «гнуться» и находится в местах, где белковую цепь надо развернуть. У пролина же, наоборот, боковая группа образует кольцо, ковалентно связанное с основной цепью, жестко фиксируя ее конформацию. Пролины встречаются там, где надо сделать белковую цепь жесткой и негнущейся. Многие заболевания связаны с мутацией пролина на глицин, из-за чего структура белка слегка «плывет».
Вопрос: откуда вообще мы знаем о трехмерных структурах белка?
Ответ: из эксперимента, это абсолютно надежные данные.
Сейчас есть 3 метода для экспериментального определения структуры белка: ядерно-магнитный резонанс (ЯМР), cryo-EM (электронная микроскопия) и рентгеноструктурный анализ кристаллов белка.
ЯМР позволяет определить структуру белка в растворе, но он работает только для очень маленьких белков (для больших невозможно сделать деконволюцию).

Этот метод был важен для общего доказательства того, что у белка только одна трехмерная структура и что структура белка в кристалле идентична структуре в растворе. Это очень дорогой метод, так как требуется получить белок с изотопными метками.
Cryo-EM заключается в простой заморозке раствора белка и микроскопии. Минус метода – низкое разрешение (видна лишь общая форма молекулы, но не видно, как она устроена внутри), плюс плотность белка близка к плотности воды/растворителя, поэтому сигнал тонет в высоком уровне шума. В этом методе активно применяются компьютерные технологии работы с картинками и статистика для вытягивания сигнала из шума.

Отбираются миллионы картинок молекул белка, проводится разделение на классы в зависимости от ориентации молекулы относительно подложки, усреднение по классам, генерация eigenimages, новый раунд усреднения и так пока не сойдется. Потом из информации из разных классов можно восстановить трехмерный вид молекулы с низким разрешением. Если же есть внутренняя симметрия частиц (например, при cryo-EM анализе вирусов), то можно еще каждую частицу поусреднять в соответствии с операторами симметрии – тогда разрешение будет еще лучше, но хуже, чем в случае рентгеноструктурного анализа.
Рентгеноструктурный анализ – основной способ определения структур белка. Главный плюс – потенциально можно получить кристаллы даже очень больших комплексов из многих десятков белков (например, именно так была определена структура рибосомы – Нобелевская премия 2009 года). Минус метода – вначале нужно получить кристалл белка, но далеко не каждый белок хочет кристаллизоваться.

Зато после того, как кристалл получен, по дифракции рентгеновского излучения можно однозначно определить положения всех (упорядоченных) атомов в молекуле белка, этот метод дает самое высокое разрешение и позволяет в лучших случаях видеть позиции отдельных атомов. Было доказано, что структура белка в кристалле однозначно соответствует структуре в растворе.
Сейчас действует конвенция – если ты определил структуру белка любым из экспериментальных физических методов, структура должна быть помещена в открытый доступ в банк данных белковых структур (Protein Data Bank – PDB, www.pdb.org ), в настоящее время там находится более 90 000 структур (впрочем, многие из них повторяющиеся, например, комплексы одного и того же белка с разными малыми молекулами, такими, как лекарственные средства). В PDB все структуры лежат в стандартном формате, называющемся, внезапно, pdb. Это текстовый формат, в котором каждому атому структуры соответствует одна строчка, в которой указан номер атома в структуре, название атома (углерод, азот и тд), название аминокислоты, в которую входит атом, название цепи белка (A, B, C и тд, если это кристалл комплекса из нескольких белков), номер аминокислоты в цепи и трехмерные координаты атома в ангстремах относительно ориджина, плюс так называемые температурный фактор и заселённость (это сугубо кристаллографические параметры).
ATOM 1 N HIS A 17 -12.690 8.753 5.446 1.00 29.32 N ATOM 2 CA HIS A 17 -11.570 8.953 6.350 1.00 21.61 C ATOM 3 C HIS A 17 -10.274 8.970 5.544 1.00 22.01 C ATOM 4 O HIS A 17 -10.193 8.315 4.491 1.00 29.95 O ATOM 5 CB HIS A 17 -11.462 7.820 7.380 1.00 23.64 C ATOM 6 CG HIS A 17 -12.551 7.811 8.421 1.00 21.18 C ATOM 7 ND1 HIS A 17 -13.731 7.137 8.194 1.00 28.94 N ATOM 8 CD2 HIS A 17 -12.634 8.384 9.644 1.00 21.69 C ATOM 9 CE1 HIS A 17 -14.492 7.301 9.267 1.00 27.01 C ATOM 10 NE2 HIS A 17 -13.869 8.058 10.168 1.00 22.66 N ATOM 11 N ILE A 18 -9.269 9.660 6.089 1.00 19.45 N ATOM 12 CA ILE A 18 -7.910 9.377 5.605 1.00 18.67 C ATOM 13 C ILE A 18 -7.122 8.759 6.749 1.00 16.24 C ATOM 14 O ILE A 18 -7.425 8.919 7.929 1.00 18.80 O ATOM 15 CB ILE A 18 -7.228 10.640 5.088 1.00 20.22 C ATOM 16 CG1 ILE A 18 -7.062 11.686 6.183 1.00 18.52 C ATOM 17 CG2 ILE A 18 -7.981 11.176 3.889 1.00 24.61 C ATOM 18 CD1 ILE A 18 -6.161 12.824 5.749 1.00 28.21 C ATOM 19 N ASN A 19 -6.121 8.023 6.349 1.00 15.46 N ATOM 20 CA ASN A 19 -5.239 7.306 7.243 1.00 14.34 C ATOM 21 C ASN A 19 -4.012 8.178 7.507 1.00 14.83 C ATOM 22 O ASN A 19 -3.431 8.715 6.575 1.00 18.03 O ATOM 23 CB ASN A 19 -4.825 6.003 6.573 1.00 17.71 C ATOM 24 CG ASN A 19 -6.062 5.099 6.413 1.00 21.26 C ATOM 25 OD1 ASN A 19 -6.606 4.651 7.400 1.00 26.18 O ATOM 26 ND2 ASN A 19 -6.320 4.899 5.151 1.00 31.73 N

Далее есть специальные программы, которые по данным из этого текстового файла могут графически отображать красивую трехмерную структуру молекулы белка, которую можно покрутить на экране монитора и, как говорил Гай Додсон, «дотронуться мышкой до молекулы» (например, PyMol, CCP4mg, старый RasMol). То есть смотреть на структуры белка просто – ставишь программу, загружаешь нужную структуру из PDB и наслаждаешься красотой природы.

4. Анализируем структуру

Итак, мы поняли основную идею: белок — линейный полимер, сворачивающийся в водном растворе под действием множества слабых взаимодействий в стабильную и единственную для данного белка трехмерную структуру, и способный в таком виде выполнять свою функцию. Различают несколько уровней организации белковых структур. Выше мы уже познакомились с первичной структурой – линейной последовательностью аминокислот, которую можно выписать в строчку.

Вторичная структура белка определяется взаимодействием атомов основной цепи белка. Как уже было сказано выше, в состав основной цепи белка входят доноры и акцепторы водородной связи, таким образом, основная цепь может приобретать некоторую структуру. Точнее, несколько разных структур (детали все-таки зависят от различающихся боковых групп), так как возможно образование разных альтернативных водородных связей между группами основной цепи. Структуры бывают такие: альфа-спираль, бета-листы (состоящие из нескольких бета-тяжей), которые бывают параллельными и анти-параллельными, бета-поворот. Плюс часть цепи может и не иметь выраженной структуры, например в районе поворота петли белка. Эти типы структур имеют свои устоявшиеся схематичные обозначения – альфа-спираль в виде спирали или цилиндра, бета-тяжи в виде широких стрелок. Вторичную структуру удается достаточно достоверно предсказывать по первичной (стандартом является JPred), альфа-спирали предсказываются наиболее точно, с бета-тяжами бывают накладки.
Третичная структура белка определяется взаимодействием боковых групп аминокислотных остатков, это и есть трехмерная структура белка. Можно представить себе, что вторичная структура сформирована и теперь эти спирали и бета-тяжи хотят уложиться все вместе в компактную трехмерную структуру, чтобы все гидрофобные боковые группы спокойно «слиплись» вместе в глубине белковой глобулы, сформировав гидрофобное ядро, а полярные и заряженные остатки торчали наружу в воду, формируя поверхность белка и стабилизируя контакты между элементами вторичной структуры. Третичную структуру изображают схематически несколькими способами. Если просто отрисовать все атомы, то получится каша (хотя когда мы анализируем активный центр белка, то мы хотим смотреть как раз на все атомы активных остатков).

Если мы хотим посмотреть, как устроен весь белок в общем, можно отобразить только некоторые атомы основной цепи, чтобы увидеть ее ход. Как вариант, можно нарисовать красивую схему, где поверх реального расположения атомов схематично нарисованы элементы вторичной структуры – так с первого взгляда видна укладка белка. После изучения всей структуры в общем, схематичном виде, можно отобразить химические группы активного центра и уже сосредоточиться на них. Задача предсказания третичной структуры белка – нетривиальная и в общем случае не решается, хотя может быть решена в частных случаях. Подробнее – ниже.
Четвертичная структура белка – да, есть и такая, правда не у всех белков. Многие белки работают сами по себе (мономеры, в данном случае под мономером имеется в виду одиночная свернутая полипептидная цепь, то есть белок целиком), тогда их четвертичная структура равна третичной. Однако достаточно много белков работает только в комплексе, состоящем из нескольких полипептидных цепей (субъединиц или мономеров — димеры, тримеры, тетрамеры, мультимеры), тогда вот такая сборка из нескольких отдельных цепей и называется четвертичной структурой. Самый банальный пример –состоящий из 4 субъединиц гемоглобин, самый красивый на мой взгляд пример – состоящий из 11 одинаковых субъединицбактериальный белок TRAP.

5. Вычислительные задачи

Белок – сложная система из тысяч атомов, поэтому без использования компьютеров в структуре белка не разобраться. Задач, как решенных на приемлемом уровне, так и совсем не решенных, множество. Перечислю наиболее актуальные:
На уровне первичной структуры – поиск белков с похожей аминокислотной последовательностью, построение по ним эволюционных деревьев и тд – классические задачи биоинформатики. Главным хабом является NCBI — The National Center for Biotechnology Information, www.ncbi.nlm.nih.gov. Для поиска белков со сходной последовательностью стандартно используется BLAST: blast.ncbi.nlm.nih.gov/Blast.cgi
Предсказание растворимости белка. Речь идет о том, что если мы прочитаем геном какого-нибудь животного, определим по нему последовательности белков, переклонируем эти гены в кишечную палочку или baculovirus expression system, то окажется, что при экспрессии в этих системах примерно треть белков не будет сворачиваться в правильную структуру, и, как следствие, будет нерастворима. Тут выясняется, что большие белки на самом деле состоят из отдельных «доменов», каждый из которых представляет автономную, функциональную часть белка (несущую одну из его функций) и часто «вырезав» из гена отдельный домен, можно получить растворимый белок, определить его структуру и провести с ним опыты. Люди пытаются использовать машинное обучение (нейронные сети, SVM и прочие классификаторы), чтобы предсказывать растворимость белка, однако работает оно достаточно плохо (Гугл много чего покажет по запросу “protein solubility prediction” – есть много серверов, но по моему опыту все они работают отвратительно на моих белках). В идеале я хотел бы видеть сервис, который надежно сказал бы, где в белке находятся те самые растворимые домены, чтобы их можно было вырезать и работать с ними – такого сервиса нет.
На уровне вторичной структуры – предсказание той самой вторичной структуры по первичной (JPred)
На уровне третичной структуры – поиск белков со сходными трехмерными структурами (DALI, en.wikipedia.org/wiki/Structural_alignment ),
Поиск структур по заданной суб-структуре. Например, у меня есть расположение трех аминокислот активного центра в пространстве. Хочу найти структуры, которые содержать такие же три аминокислоты в таком же относительном расположении, либо найти структуры белков, мутирование которых даст возможность расположить нужные аминокислоты нужным образом. (гуглить «protein substructure search»)

Предсказание потенциальной подвижности трехмерной структуры, возможных конформационных изменений – normal mode analysis, ElNemo.
На уровне четвертичной структуры – предположим, известны структуры двух белков. Известно, что они образуют комплекс. Предсказать структуру комплекса (определить, как эти два белка будут взаимодействовать посредством shape matching, например). Гуглить «protein-protein docking»

6. Предсказание структуры белка

Выделил эту вычислительную задачу в отдельный раздел, ибо велика она, фундаментальна и не решается в общем случае.
Экспериментально мы знаем, что если взять белок, полностью развернуть его и бросить в воду, то он свернется обратно в исходное состояние за время от миллисекунд до секунд (это утверждение справедливо по крайней мере для небольших глобулярных белков без всяких патологий). Это значит, что вся информация, необходимая для определения трехмерной структуры белка, в неявном виде содержится в его первичной последовательности, поэтому так хочется научиться предсказывать трехмерную структуру белка по последовательности аминокислот in silico! Однако эта задача в общем случае не решена до сих пор. В чем же дело? Дело в том, что в первичной последовательности отсутствует в явном виде информация, необходимая для построения структуры. Во-первых, нет информации о конформации основной цепи – а она обладает значительной подвижностью, хотя и несколько ограниченной по стерическим причинам. Плюс каждая боковая цепь каждой аминокислоты может находиться в разных конформациях, для длинных боковых групп типа аргинина, это может быть больше десятка конформаций.
Что же делать? Есть достаточно известный хабравчанам самый общий подход, называемый «молекулярная динамика» и подходящий для любых молекул и систем. Берем развернутый белок, приписываем всем атомам случайные значения скоростей, считаем взаимодействия между атомами, повторяем до тех пор, пока система не придет в стабильное состояние, соответствующее свернутому белку. Почему это не работает? Потому что современные вычислительные мощности позволяют за месяцы работы кластера считать десятки наносекунд для системы из тысяч атомов, какой является белок, помещенный в воду. Время же сворачивания белка – миллисекунды и больше, то есть вычислительных мощностей не хватает, разрыв – в несколько порядков. Впрочем, пару лет назад американцы совершили некоторый прорыв. Они использовали специальное железо, оптимизированное для векторных вычислений и после оптимизации на аппаратном уровне у них за месяцы работы машины получилось посчитать молдинамику до миллисекунд для очень маленького белка и белок свернулся, структура соответствовала экспериментально определенной ( http://en.wikipedia.org/wiki/Anton_(computer) )! Однако праздновать победу еще рано. Они взяли очень маленький (его размер раз в 5-10 меньше среднего белка) и один из самых быстросворачивающихся белков, классический модельный белок, на котором изучалось сворачивание. Для больших белков время расчетов увеличивается нелинейно и потребуются уже годы, то есть еще есть над чем работать.
Другой подход реализован в Rosetta. Они разбивают последовательность белка на очень короткие (3-9 остатков) фрагменты и смотрят, какие конформации для этих фрагментов присутствуют в PDB, после чего запускают Монте-Карло по всем вариантам и смотрят, что получится. Иногда получается что-то годное, но в моих случаях через несколько дней работы кластера получаешь такой бублик, что возникает немой вопрос: «Кто писал их оценочную функцию, ставящую какую-то хорошую оценку вот этой загогулине?».
Есть инструменты и для моделирования вручную – можно предсказать вторичную структуру и попробовать вручную крутить ее, находя лучшую укладку. Некие гениальные люди даже выпустили игрушку FoldIt, представляющую белок схематично и позволяющую укладывать его, как-бы собирая головоломку (для интересующихся структурой – рекомендую!). Есть абсолютно официальное соревнование для предсказателей белковых структур, называемое CASP. Суть в том, что когда экспериментаторы определяют новую структуру белка, не имеющую аналогов в PDB, они могут не выкладывать ее сразу в PDB, а выставить последовательность этого белка на конкурс предсказаний CASP. Через некоторое время, когда все закончат свои предсказательные модели, экспериментаторы выкладывают свою экспериментально определенную структуру белка и смотрят, насколько хорошо сработали предсказатели. Самое интересное, что игроки FoldIt, не будучи учеными, как-то выиграли CASP у профессионалов моделирования белковых структур и предсказали структуру белка точнее. Однако даже эти успехи не позволяют утверждать, что проблема предсказания структуры белка решается – очень часто модель очень далека от реальной структуры.
Все это относилось к моделированию белков ab initio, когда нет никакой априорной информации о структуре. Однако очень часто бывают ситуации, когда для некоторого белка в PDB присутствует его отдаленный родственник с уже известной структурой. Под родственником подразумевается белок с похожей первичной последовательностью. Считается, что для белков со сходством по первичной последовательности больше 30% одинаковая укладка основной цепи (хотя одинаковая укладка наблюдалась и для белков, не проявляющих никакого статистически достоверного сходства по первичной последовательности). В случае наличия гомолога (похожего белка) с известной структурой, можно сделать «гомологичное моделирование», то есть попросту «натянуть» последовательность твоего белка на известную структуру гомолога, а потом погонять минимизацию энергии, чтобы как-то все это дело утрясти. Такое моделирование показывает хорошие результаты при наличие очень близких гомологов, чем дальше гомолог – тем больше ошибка. Инструменты для гомологичного моделирования – Modeller, SwissModel.
Можно решать и другие задачи, например, пытаться моделировать, что произойдет, если внести в белок ту или иную мутацию. Например, если заменить гидрофильную аминокислоту на поверхности белка на другую гидрофильную, то скорее всего структура белка не изменится вообще. Если заменить аминокислоту из гидрофобного ядра на другую гидрофобную, но другого размера, то скорее всего укладка белка останется той же, но слегка «съедет» на доли ангстрема. Если же заменить аминокислоту из гидрофобного ядра на заряженную, то скорее всего белок просто «взорвется» и не сможет свернуться.

Может показаться, что все не так уж и плохо и мы достаточно хорошо пониманием сворачивание белка. Да, мы понимаем кое-что, например до некоторой степени мы понимаем общие физические принципы, лежащие в основе сворачивания полипептидной цепи – они рассматриваются в замечательном учебнике Птицына и Финкельштейна «Физика белка». Однако это общее понимание не позволяет нам ответить на вопросы «Свернется ли данный белок или не свернется?», «Какая структура будет у этого белка?», «Как сделать белок с желаемой структурой?».
Вот одна из иллюстраций: мы хотим локализовать один из доменов большого белка, это стандартная задача. У нас есть фрагмент, который сворачивается и растворим, то есть это живой и здоровый белок. Мы же хотим найти его минимальную часть и начинаем методами генетической инженерии с обоих концов удалять по 2-3 аминокислоты, экспрессировать такой обрезанный белок в бактерии и смотреть его сворачиваемость экспериментально. Мы делаем десятки конструкций с такими маленькими делециями и видим такую картину – полностью растворимый и живой белок отличается от полностью мертвого и несворачивающегося на 3 аминокислоты. Повторюсь, это объективный экспериментальный результат. Проблема в том, что сейчас не существует вычислительного метода, который предсказал бы сворачиваемость белка хотя бы на уровне «да/нет» и сказал мне, где проходит граница между сворачивающимся и несворачивающимся белком, потому мы вынуждены клонировать и экспериментально проверять десятки вариантов. Это лишь одна из иллюстраций того, что наше понимание структуры белка весьма далеко от совершенства. Как говорил Ричард Фейнман, «Чего не могу воссоздать, того не понимаю».
Так что, господа программисты, физики и математики, нам еще есть над чем работать.
На этой оптимистичной ноте разрешите откланяться, благодарю всех, кто осилил сей опус.
Для глубоко знакомства с предметной областью рекомендую следующий минимум:
1) «Физика белка» Птицын и Финкельштейн. Большую часть материала Алексей Витальевич Финкельштейн выложил в онлайн, чем и рекомендую с благодарностью воспользоваться: phys.protres.ru/lectures/protein_physics/index.html (а я утащил оттуда несколько картинок)
2) Патрушев, «Искусственные генетические системы», особенно часть II «Белковая инженерия». Есть на торрентах в формате Djvu
3) Для информации, опубликованной в биологических научных журналах, есть официальный поисковик PubMed ( www.pubmed.org ) — у него стоит попросить почитать про «protein engineering» и тому подобное.

Глобулярные и фибриллярные белки

Глобулярные белки́ — белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры — глобулы (третичные структуры белка)

Глобулярная структура белков обусловлена гидрофобно-гидрофильными взаимодействиями.

К глобулярным белкам относятся ферменты, иммуноглобулины, некоторые гормоны белковой природы (например, инсулин) а также другие белки, выполняющие транспортные, регуляторные и вспомогательные функции.

Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру, в которой отношение поперечной оси к продольной больше 1:10. Большинство фибриллярных белков не растворяется в воде, имеет большую молекулярную массу и высоко регулярную пространственную структуру, которая стабилизируется, главным образом, взаимодействиями (в том числе и ковалентными) между различными полипептидными цепями. Первичная и вторичная структура фибриллярного белка также, как правило, регулярна. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.

К фибриллярным белкам относят:

α-структурные фибриллярные белки (кератины, на долю которых приходится почти весь сухой вес волос и других роговых покровов, тропомиозин, белки промежуточных филаментов)

β-структурные фибриллярные белки (фиброин шёлка)

коллаген — белок сухожилий и хрящей.

Физико-химические свойства белков.

Наиболее характерными физико-химическими свойствами белков являются высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению УФ-лучей при 280 нм (это свойство, обусловленное наличием в белках ароматических аминокислот, используется для количественного определения белков).

Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2- и СООН-групп. Для них характерны все свойства кислот и оснований. В зависимости от реакции среды и соотношения кислых и основных аминокислот белки в растворе несут или отрицательный, или положительный заряд, перемещаясь к аноду или катоду. Это свойство используется при очистке белков методом электрофореза.

Белки обладают явно выраженными гидрофильными свойствами. Растворы белков имеют очень низкое осмотическое давление, высокую вязкость и незначительную способность к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связан ряд характерных свойств, в частности явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии. Этот эффект используется, кроме того, в современных методах микроскопии биологических объектов. Молекулы белка не способны проникать через полупроницаемые искусственные мембраны (целлофан, пергамент, коллодий), а также биомембраны растительных и животных тканей, хотя при органических поражениях, например, почек капсула почечного клубочка (Шумлянского-Боумена) становится проницаемой для альбуминов сыворотки крови и последние появляются в моче.

Высаливание белков.

Высаливание – это добавление к раствору белка нейтральных солей (Na2SO4, (NH4)2SO4). Механизм высаливания заключается во взаимодействии анионов (SO42-) и катионов (Na+, NH4+) с зарядами белка (группы NH4+ и COO–). В результате заряд исчезает, и соответственно, исчезает взаимоотталкивание молекул. Одновременно резко уменьшается гидратная оболочка. Все это приводит к «слипанию» молекул и осаждению.

Так как белки плазмы крови отличаются по размерам, заряду, строению, то можно подобрать такие количества соли, которые вызовут осаждение менее устойчивых белков, пока другие еще будут растворены.

Например, подобным образом раньше определяли соотношение альбумины/глобулины в плазме крови. Альбумины, как более полярные молекулы, остаются в растворенном состоянии при 50% насыщении раствора нейтральными солями, в то время как глобулины в этих условиях уже осаждаются. В норме соотношение альбумины/глобулины в плазме крови равно 1,2-1,8.

Денатурация белков.

Природные белковые тела наделены определенной, строго заданной пространственной конфигурацией и обладают рядом характерных физико-химических и биологических свойств при физиологических значениях температуры и рН среды. Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства. Таким образом, под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.

Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению количества свободных функциональных SH-групп и изменению характера рассеивания рентгеновских лучей. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). При денатурации белка, вызванной 8М мочевиной или другим агентом, разрушаются в основном нековалентные связи (в частности, гидрофобные взаимодействия и водородные связи). Дисульфидные связи в присутствии восстанавливающего агента меркаптоэтанола разрываются, в то время как пептидные связи самого остова полипептидной цепи не затрагиваются. В этих условиях развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры.

При непродолжительном действии и быстром удалении денатурирующих агентов возможна ренатурация белка с полным восстановлением исходной трехмерной структуры и нативных свойств его молекулы ,включая биологическую активность. Таким образом, при денатурации белковая молекула полностью теряет биологические свойства, демонстрируя тем самым тесную связь между структурой и функцией. Для практических целей иногда используют процесс денатурации в «мягких» условиях, например при получении ферментов или других биологически активных белковых препаратов в условиях низких температур в присутствии солей и при соответствующем значении рН . При лиофилизации белков (высушивание в вакууме путем возгонки влаги из замороженного состояния) для предотвращения денатурации часто пользуются химическими веществами (простые сахара, глицерин, органические анионы).

Глобулярные белки

По особенностям структуры и форме молекулы белки делятся фибриллярные и глобулярные. Глобулярные белки – это простые соединения, форма которых стремится к сферической или эллипсоидной, такой внешний вид они получили благодаря свернутым в шарики полипептидным цепям.

Условно глобулярные белки можно разделить на истинные глобулины и псевдоглобулины. Истинные не являются растворимыми в воде, псевдоглобулины – частично растворимы.

К глобулярным белкам относятся практически все ферменты (около 2000), некоторые гормоны, например, инсулин, иммуноглобулины, антитела, а также некоторые другие белки, которые выполняют ряд вспомогательных, регуляторных и транспортных функций. Главное их функциональное отличие от фибриллярных белков заключается именно в динамичности. Именно благодаря тому, что данные белки обладают динамическим, а не статическим характером, так широк спектр выполняемых ими функций.

Существует ряд белков, которые относятся к промежуточному классу, то есть с одной стороны они рассматриваются как глобулярные, с другой – как фибриллярные. Примером такого белка может служить миозин, фибриоген крови и т.д. Как и глобулярные, так белки являются водорастворимыми, но состоят из палочкообразных структур, что является характерной особенностью фибриллярных.

Глобулярные белки обладают следующей структурой: первичная структура, то есть аминокислотная последовательность в цепи; вторичная – спирализация полипептидных цепей. Для различных белков характерна своя структура, которая определяет основные функции этих молекул.

Важнейшими представителями глобулярных белков являются глобулины, гистоны, глутелины, альбумины, протамины, проламины.

Глобулярные белки составляют более 90% всех белков организма, а также около половины плазмы и сыворотки крови. Во время протекания различных патологических процессов в организме (воспаления, злокачественные новообразования, инфекционные заболевания) количество глобулинов значительно повышается, это связано с выработкой антител.

1.9 Глобулярные и фибриллярные белки

  • •Предисловие
  • •Глава 1. Аминокислоты и белки
  • •1.1 Общая характеристика
  • •1.2 Классификация аминокислот
  • •1.3 Модификация аминокислот
  • •1.4 Ионизация аминокислот
  • •1.5 Пептидная связь
  • •1.6 Пептиды и белки
  • •1.7 Функции белков
  • •1.8 Уровни структурной организации белков
  • •А Первичная структура белка
  • •Б Вторичная структура белка
  • •В Третичная структура белка
  • •Д Четвертичная структура белка
  • •1.9 Глобулярные и фибриллярные белки
  • •А Кератин
  • •1.10 Простые и сложные белки
  • •1.11 Денатурация и ренатурация белков
  • •1.12 Методы работы с белками
  • •А Очистка и выделение белка
  • •Б Высаливание
  • •В Диализ
  • •Д Аналитические методы работы с белками
  • •Термины
  • •Вопросы к семинарскому занятию (1-я часть)
  • •Вопросы к семинарскому занятию (2-я часть)
  • •Дополнительные вопросы и ключевые слова
  • • Аминокислоты
  • •Вопросы для самопроверки
  • •Глава 2. Ферменты
  • •2.1 Общая характеристика
  • •2.2 Номенклатура ферментов
  • •2.3 Свойства ферментов
  • •2.4 Строение фермента
  • •2.5 Специфичность ферментов
  • •А Модель «ключ-замок»
  • •Б Модель индуцированного соответствия
  • •2.7 Термодинамика ферментативных реакций
  • •2.8 Кинетика ферментативных реакций
  • •А Вывод уравнения Михаэлиса-Ментен (по Бергу)
  • •В Уравнение Лайнуивера-Берка
  • •2.9 Механизмы ферментативного катализа
  • •2.10 Влияние факторов среды на скорость протекания ферментативной реакции
  • •А Концентрация субстрата
  • •2.12 Мультисубстратные реакции
  • •А Последовательный механизм
  • •Б Механизм «пинг-понг»
  • •2.13 Ингибирование ферментов
  • •Б Бесконкурентные ингибиторы
  • •В Неконкурентные ингибиторы
  • •2.14 Кооперативные взаимодействия внутри молекул ферментов
  • •А Параллельная модель
  • •2.15 Аллостерическая регуляция активности ферментов
  • •2.16 Регуляция активности ферментов с помощью ковалентной модификации
  • •2.17 Анти-, мульти- и изоферменты
  • •2.18 Ферменты в медицине
  • •А Энзимодиагностика
  • •Термины
  • •Вопросы к занятию (1-я часть)
  • •Вопросы к занятию (2-я часть)
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 3. Нуклеиновые кислоты
  • •3.1 Общая характеристика
  • •3.2 Строение нуклеотида
  • •3.3 Первичная структура ДНК
  • •3.4 Вторичная структура ДНК
  • •3.5 Денатурация и ренатурация ДНК
  • •3.6 Третичная структура ДНК
  • •3.7 Четвертичная структура ДНК
  • •3.8 Виды РНК и их функции
  • •3.9 Первичная структура РНК
  • •3.10 Вторичная структура РНК
  • •3.11 Третичная структура РНК
  • •3.12 Четвертичная структура РНК
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 4. Репликация
  • •4.1 Общая характеристика
  • •4.2 Инициация репликации у прокариот
  • •4.3 Элонгация репликации у прокариот
  • •Б Механизм ферментативной реакции
  • •4.4 Терминация репликации у прокариот
  • •4.5 Репликация у эукариот
  • •4.6 Проблемы репликации
  • •Б Проблема высокой точности процесса
  • •4.7 Плазмиды
  • •В Типы плазмид
  • •Д Механизмы репликации кольцевых плазмид
  • •4.8 Репликация вирусов
  • •Б Репликация генома РНК-вирусов
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 5. Транскрипция
  • •5.1 Организация генетической информации
  • •5.2 Общая характеристика транскрипции
  • •5.3 Гипотеза Жакоба и Моно
  • •5.4 Строение РНК-полимераз
  • •5.5 Инициация транскрипции у прокариот
  • •5.6 Элонгация транскрипции у прокариот
  • •5.7 Терминация транскрипции у прокариот
  • •5.8 Инициация транскрипции у эукариот
  • •5.9 Элонгация транскрипции у эукариот
  • •5.10 Терминация транскрипции у эукариот
  • •А Кэпирование
  • •Б Полиаденилирование
  • •В Сплайсинг
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 6. Трансляция
  • •6.1 Общая характеристика
  • •6.2 Свойства генетического кода
  • •6.3 Основные этапы биосинтеза белка
  • •А Этап 1. Активация аминокислот
  • •Д Этап 5. Фолдинг и посттрансляционная модификация
  • •6.4 Рибосомы
  • •6.5 Инициация у прокариот
  • •6.6 Инициация у эукариот
  • •6.7 Элонгация у прокариот
  • •6.8 Элонгация у эукариот
  • •6.9 Терминация у прокариот
  • •6.10 Терминация у эукариот
  • •6.11 Гипотеза «качания»
  • •6.12 Фолдинг и посттрансляционная модификация белков
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 7. Регуляция биосинтеза белка
  • •7.1 Регуляция экспрессии генов у прокариот
  • •В Катаболическая репрессия. Лактозный оперон
  • •Д Аттенуация. Триптофановый оперон
  • •Е «Сильные» и «слабые» промоторы
  • •Ж σ-Субъединица РНК-полимеразы
  • •7.2 Регуляция экспрессии генов у эукариот
  • •Хроматин-перестраивающие комплексы
  • •Архитектурные белки высокомобильной группы
  • •Ковалентная модификация гистонов
  • •Метилирование ДНК
  • •В Регуляция с помощью факторов транскрипции
  • •7.3 Регуляция на уровне трансляции у про- и эукариот
  • •А Дискриминация мРНК
  • •Б Трансляционная репрессия
  • •7.4 Другие механизмы регуляции у эукариот
  • •Б РНК-интерференция
  • •Интерференция с помощью малых интерферирующих РНК
  • •Интерференция с помощью микроРНК
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • • Регуляция на уровне транскрипции (прокариоты)
  • •Вопросы для самопроверки
  • •Глава 8. Мутации и репарация
  • •8.1 Мутации
  • •8.2 Классификация мутаций по вызвавшим их причинам
  • •8.3 Классификация мутаций по степени изменений генома
  • •8.4 Классическая классификация
  • •8.5 Репарация
  • •А Прямая репарация
  • •8.6 Эксцизионная репарация оснований (BER)
  • •8.7 Эксцизионная репарация нуклеотидов (NER)
  • •8.8 Мисметч репарация
  • •8.9 Репарация двунитевых разрывов
  • •8.10 Негомологичное соединение цепей ДНК при двунитевых разрывах
  • •8.11 SOS-репарация (SOS-ответ)
  • •8.12 Рекомбинационная репарация
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 9. Иммунитет и антитела
  • •9.1 Иммунитет: его виды и элементы
  • •9.2 Врожденный (неспецифический) иммунитет
  • •В Химические медиаторы врожденного иимунитета
  • •Е Классический путь активации комплемента
  • •Ж Альтернативный путь активации комплемента
  • •З Активация терминальных компонентов комплемента
  • •И Как фагоциты отличают чужеродные клетки от «своих»?
  • •9.3 Приобретенный (специфический) иммунитет
  • •А T-лимфоциты
  • •В Антитела
  • •Е Вторичный иммунный ответ
  • •Ж Активация гуморального иммунитета
  • •9.4 Группы крови
  • •9.5 Трансфузионные реакции
  • •9.6 Правила переливания
  • •9.7 Резус-фактор (Rh)
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 10. Биологические мембраны
  • •10.1 Строение биомембран
  • •В Липиды биомембран
  • •10.2 Функции мембран
  • •10.3 Мембранный транспорт
  • •10.4 Эндо- и экзоцитоз
  • •10.5 Трансмембранная передача сигнала
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 11. Энергетический обмен
  • •11.1 Энергия в клетке
  • •11.2 Дыхательная цепь митохондрий
  • •11.3 Сопряжение дыхания и окислительного фосфорилирования
  • •11.4 Разобщение дыхания и окислительного фосфорилирования
  • •Термины
  • •Вопросы к занятию
  • •Дополнительные вопросы и ключевые слова
  • •Вопросы для самопроверки
  • •Глава 12. Введение в метаболизм
  • •12.1 Общая характеристика
  • •А Метаболические пути
  • •Б Метаболиты
  • •В Гомеостаз
  • •12.2 Функции метаболических путей
  • •А Образование энергии
  • •Б Катаболизм органических соединений
  • •Переваривание
  • •Гликолиз
  • •Окисление жирных кислот
  • •Катаболизм аминокислот
  • •В Синтез органических соединений и предшественников макромолекул
  • •Глюконеогенез: синтез глюкозы
  • •Синтез жирных кислот
  • •Синтез гема
  • •Креатинфосфат
  • •Гликоген
  • •Жиры или триацилглицеролы
  • •Д Выведение потенциально опасных соединений
  • •Цикл мочевины
  • •Синтез желчных кислот
  • •Катаболизм гема
  • •Е Образование регуляторных молекул
  • •12.3 Ключевые положения всех метаболических путей
  • •А АТФ — донор энергии для синтеза
  • •В Эссенциальные органические соединения
  • •Д Взаимосвязи метаболических путей
  • •Е Нелинейность метаболических путей
  • •Ж Локализация метаболических путей в клетке
  • •З Тканеспецифичность метаболических путей
  • •И Метаболизм при голодании
  • •12.4 Интеграция метаболизма
  • •Состояние насыщения
  • •Состояние голодания
  • •Б Интеграция метаболизма в различных физиологических состояниях
  • •Состояние голодания
  • •Продолжительное голодание
  • •Состояние насыщения
  • •Физические нагрузки
  • •В Регуляция метаболизма
  • •Инсулин
  • •Глюкагон
  • •Адреналин
  • •Гидрокортизон
  • •Адипоцитокины
  • •Рекомендуемая литература
  • •Приложение 1. Аминокислоты и белки
  • •Классификация аминокислот
  • •Приложение 2. Ферменты
  • •Строение химотрипсина
  • •Приложение 3. Нуклеиновые кислоты
  • •Приложение 4. Репликация
  • •Приложение 5. Транскрипция
  • •Приложение 6. Трансляция
  • •Приложение 7. Регуляция биосинтеза белка
  • •Приложение 8. Мутации и репарация
  • •Приложение 9. Иммунитет и антитела
  • •Приложение 10. Биологические мембраны
  • •Приложение 11. Энергетический обмен
  • •Оглавление

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх