Чудесный разговор

Полезная информация о вашем здоровье

Фермент — что это?

Ферменты

Модель фермента нуклеозидфосфорилазы

Ферме́нты, или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον — закваска) — обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы — повышают, ингибиторы — понижают).

Белковые ферменты синтезируются на рибосомах, а РНК — в ядре.

Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй — в англо- и франкоязычной).

Наука о ферментах называется энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

В кон. ХVIII — нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен.

В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришёл к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках.

Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастера с одной стороны, и М. Бертло и Ю. Либиха — с другой, о природе спиртового брожения. Собственно ферментами (от лат. fermentum — закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч. ἐν- — в- и ζύμη — дрожжи, закваска) предложен в 1876 году В. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин, амилаза). Через два года после смерти Л. Пастера в 1897 году Э. Бухнер опубликовал работу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В 1907 году за эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 году Дж. Самнером. В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана.

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшим сплайсинг РНК у инфузории Tetrahymena thermophila. Рибозимом оказался участок молекулы пре-рРНК Tetrahymena, кодируемый интроном внехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах — ими катализируется более 4000 разных биохимических реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10−10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз. См. также Каталитически совершенный фермент

Классификация ферментов

Основная статья: Шифр КФ

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC — Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • КФ 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа.
  • КФ 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
  • КФ 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза.
  • КФ 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • КФ 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
  • КФ 6: Лигазы, катализирующие образование химических связей между субстратами за счёт гидролиза АТФ. Пример: ДНК-полимераза.

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию — присоединение по двойным связям.

Соглашения о наименовании ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата (например, лактаза — фермент, участвующий в превращении лактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например, по оптимальному pH (щелочная фосфатаза) или локализации в клетке (мембранная АТФаза).

Кинетические исследования

Кривая насыщения химической реакции, иллюстрирующая соотношение между концентрацией субстрата и скоростью реакции v

Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса — Ментен (см. рис.). На сегодняшний момент описано несколько механизмов действия ферментов. Например, действие многих ферментов описывается схемой механизма «пинг-понг».

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат, а также химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи — «активный центр» — уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа.

В активном центре условно выделяют:

  • каталитический центр — непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или «якорная» площадка) — обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной «шубы»
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко — за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В — субстраты, АВ — продукт реакции, Ф — фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Модель «ключ-замок»

Гипотеза Кошланда об индуцированном соответствииБолее реалистичная ситуация в случае индуцированного соответствия. Неправильные субстраты — слишком большие или слишком маленькие — не подходят к активному центру

В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата. Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок». Ферменты, в основном, — не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации — присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций — расщепление полипептидной цепи. Например, химотрипсин (протеаза, участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе. Неактивная форма транспортируется в желудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавин или гем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь — цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи — важный способ поддержания гомеостаза (относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме — давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Множественные формы ферментов

Множественные формы ферментов можно разделить на две категории:

  • Изоферменты
  • Собственно множественные формы (истинные)

Изоферменты — это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

  • Органные — ферменты гликолиза в печени и мышцах.
  • Клеточные — малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).
  • Гибридные — ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа — 4 субъединицы 2 типов).
  • Мутантные — образуются в результате единичной мутации гена.
  • Аллоферменты — кодируются разными аллелями одного и того же гена.

Собственно множественные формы (истинные) — это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомах они подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Медицинское значение

Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина. Фенилкетонурия связана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

Практическое использование

Ферменты широко используются в народном хозяйстве — пищевой, текстильной промышленности, в фармакологии и медицине. Большинство лекарств влияют на течение ферментативных процессов в организме, запуская или приостанавливая те или иные реакции.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Примечания

Литература

В Викисловаре есть статья «фермент»Модель фермента нуклеозидфосфорилазы

Ферме́нты (от лат. fermentum) или энзи́мы (от греч. ζύμη, ἔνζυμον «закваска»), — обычно достаточно сложные молекулы белка, РНК (рибозимы) или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.

Ферментативная активность может регулироваться активаторами (повышаться) и ингибиторами (понижаться).

Белковые ферменты синтезируются на рибосомах, а РНК — в ядре.

Термины «фермент» и «энзим» давно используют как синонимы: первый в основном в русской и немецкой научной литературе, второй — в англо- и франкоязычной.

Наука о ферментах называется энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

Энциклопедичный YouTube

  • 1/5 Просмотров:4 303 49 755 1 267 5 660 3 752
  • ✪ Ферменты (энзимы) (видео 14) | Энергия | Биология
  • ✪ Ферменты – биологические катализаторы. Значение ферментов. Видеоурок по биологии 10 класс
  • ✪ Неконкурентное ингибирование ферментов (видео 17) | Энергия | Биология
  • ✪ Ферменты. Гормоны | Химия 10 класс #46 | Инфоурок
  • ✪ Ферменты пищеварительной системы.Подготовка к ЕГЭ и ОГЭ по биологии

Субтитры

  • 1 История изучения
  • 2 Функции ферментов
  • 3 Соглашения о наименовании ферментов
  • 4 Классификация ферментов
  • 5 Кинетические исследования
  • 6 Структура и механизм действия ферментов
    • 6.1 Активный центр ферментов
    • 6.2 Специфичность
      • 6.2.1 Модель »ключ-замок»
      • 6.2.2 Модель индуцированного соответствия
    • 6.3 Модификации
    • 6.4 Кофакторы ферментов
    • 6.5 Влияние условий среды на активность ферментов
  • 7 Регуляция работы ферментов
    • 7.1 Ингибирование
    • 7.2 Активирование
    • 7.3 Ковалентная модификация
  • 8 Множественные формы ферментов
  • 9 Медицинское значение
  • 10 Практическое использование
  • 11 Примечания
  • 12 Литература
  1. Общие свойства ферментов
  2. Классификация
  3. Пищеварительные ферменты
  4. Роль заместительной терапии препаратом «Микразим»

Жизнь любого организма возможна благодаря протекающим в нем процессам обмена веществ. Этими реакциями управляют природные катализаторы, или ферменты. Другое название этих веществ – энзимы. Термин «ферменты» происходит от латинского fermentum, что означает «закваска». Понятие появилось исторически при изучении процессов брожения.

Рис. 1 — Брожение с использованием дрожжей – типичный пример ферментативной реакции

Человечество давно пользуется полезными свойствами этих ферментов. Например, уже много веков из молока с помощью сычужного фермента делают сыр.

Ферменты отличаются от катализаторов тем, что действуют в живом организме, тогда как катализаторы – в неживой природе. Отрасль биохимии, которая изучает эти важнейшие для жизни вещества, называется энзимологией.

Общие свойства ферментов

Ферменты представляют собой молекулы белковой природы, которые взаимодействуют с различными веществами, ускоряя их химическое превращение по определенному пути. При этом они не расходуются. В каждом ферменте есть активный центр, присоединяющийся к субстрату, и каталитический участок, запускающий ту или иную химическую реакцию. Эти вещества ускоряют протекающие в организме биохимические реакции без повышения температуры.

Основные свойства ферментов:

  • специфичность: способность фермента действовать только на специфический субстрат, например, липазы – на жиры;
  • каталитическая эффективность: способность ферментативных белков ускорять биологические реакции в сотни и тысячи раз;
  • способность к регуляции: в каждой клетке выработка и активность ферментов определяется своеобразной цепью превращений, влияющей на способность этих белков вновь синтезироваться.

Роль ферментов в организме человека невозможно переоценить. В то время, когда еще только открыли структуру ДНК, говорили, что один ген отвечает за синтез одного белка, который уже определяет какой-то определенный признак. Сейчас это утверждение звучит так: «Один ген – один фермент – один признак». То есть без активности ферментов в клетке жизнь не может существовать.

Классификация

В зависимости от роли в химических реакциях, различаются такие классы ферментов:

Классы

Особенности

Оксиредуктазы

Катализируют окисление своих субстратов, перенося электроны или атомы водорода

Трансферазы

Участвуют в переносе химических групп из одного вещества в другое

Гидролазы

Расщепляют крупные молекулы на более мелкие, добавляя к ним молекулы воды

Лиазы

Катализируют расщепление молекулярных связей без процесса гидролиза

Изомеразы

Активируют перестановку атомов в молекуле

Лигазы (синтетазы)

Образуют связи с атомами углерода, используя энергию АТФ.

В живом организме все ферменты делятся на внутри- и внеклеточные. К внутриклеточным относятся, например, ферменты печени, участвующие в реакциях обезвреживания различных веществ, поступающих с кровью. Они обнаруживаются в крови при повреждении органа, что помогает в диагностике его заболеваний.

Внутриклеточные ферменты, которые являются маркерами повреждения внутренних органов:

  • печень – аланинаминотрансефраза, аспартатаминотрансфераза, гамма-глютамилтранспептидаза, сорбитдегидрогеназа;
  • почки – щелочная фосфатаза;
  • предстательная железа – кислая фосфатаза;
  • сердечная мышца – лактатдегидрогеназа

Внеклеточные ферменты выделяются железами во внешнюю среду. Основные из них секретируются клетками слюнных желез, желудочной стенки, поджелудочной железы, кишечника и активно участвуют в пищеварении.

Пищеварительные ферменты

Пищеварительные ферменты – это белки, которые ускоряют расщепление крупных молекул, входящих в состав пищи. Они разделяют такие молекулы на более мелкие фрагменты, которые легче усваиваются клетками. Основные типы пищеварительных ферментов – протеазы, липазы, амилазы.

Основная пищеварительная железа – поджелудочная. Она вырабатывает большинство этих ферментов, а также нуклеаз, расщепляющих ДНК и РНК, и пептидаз, участвующих в образовании свободных аминокислот. Причем незначительное количество образующихся ферментов способно «обработать» большой объем пищи.

При ферментативном расщеплении питательных веществ выделяется энергия, которая расходуется для процессов обмена веществ и жизнедеятельности. Без участия ферментов, подобные процессы происходили бы слишком медленно, не обеспечивая организм достаточным энергетическим запасом.

Кроме того, участие ферментов в процессе пищеварения обеспечивает распад питательных веществ до молекул, способных проходить через клетки кишечной стенки и поступать в кровь.

Амилаза

Амилаза вырабатывается слюнными железами. Она действует на крахмал пищи, состоящий из длинной цепи молекул глюкозы. В результате действия этого фермента образуются участки, состоящие из двух соединенных молекул глюкозы, то есть фруктоза, и другие короткоцепочечные углеводы. В дальнейшем они метаболизируются до глюкозы в кишечнике и оттуда всасываются в кровь.

Слюнные железы расщепляют только часть крахмала. Амилаза слюны активна в течение короткого времени, пока пища прожевывается. После попадания в желудок фермент инактивируется его кислым содержимым. Большая часть крахмала расщепляется уже в 12-перстной кишке под действием панкреатической амилазы, вырабатываемой поджелудочной железой.


Рис. 2 — Амилаза начинает расщепление крахмала

Короткие углеводы, образовавшиеся под действием панкреатической амилазы, попадают в тонкий кишечник. Здесь с помощью мальтазы, лактазы, сахаразы, декстриназы они расщепляются до молекул глюкозы. Нерасщепляющаяся ферментами клетчатка выводится из кишечника с каловыми массами.

Протеазы

Белки или протеины — существенная часть человеческого рациона. Для их расщепления необходимы ферменты – протеазы. Они различаются по месту синтеза, субстратам и другим характеристикам. Некоторые из них активны в желудке, например, пепсин. Другие вырабатываются поджелудочной железой и активны в просвете кишечника. В самой железе выделяется неактивный предшественник фермента – химотрипсиноген, который начинает действовать только после смешивания с кислым пищевым содержимым, превращаясь в химотрипсин. Такой механизм помогает избежать самоповреждения протеазами клеток поджелудочной железы.


Рис. 3 — Ферментативное расщепление белков

Протеазы расщепляют пищевые белки на более мелкие фрагменты – полипептиды. Ферменты – пептидазы разрушают их до аминокислот, которые усваиваются в кишечнике.

Липазы

Пищевые жиры разрушаются ферментами-липазами, которые также вырабатываются поджелудочной железой. Они расщепляют молекулы жира на жирные кислоты и глицерин. Такая реакция требует наличия в просвете 12-перстной кишки желчи, образующейся в печени.


Рис. 4 — Ферментативный гидролиз жиров

Роль заместительной терапии препаратом «Микразим»

Для многих людей с нарушением пищеварения, прежде всего с заболеваниями поджелудочной железы, назначение ферментов обеспечивает функциональную поддержку органа и ускоряет процессы выздоровления. После купирования приступа панкреатита или другой острой ситуации прием ферментов можно прекратить, так как организм самостоятельно восстанавливает их секрецию.

Длительный прием ферментативных препаратов необходим лишь при тяжелой внешнесекреторной недостаточности поджелудочной железы.

Одним из наиболее физиологичных по своему составу является препарат «Микразим». В его состав входят амилаза, протеазы и липаза, содержащиеся в панкреатическом соке. Поэтому нет необходимости отдельно подбирать, какой фермент нужно использовать при разнообразных болезнях этого органа.

Показания для использования этого лекарства:

  • хронический панкреатит, муковисцидоз и другие причины недостаточной секреции ферментов поджелудочной железы;
  • воспалительные заболевания печени, желудка, кишечника, особенно после операций на них, для более быстрого восстановления пищеварительной системы;
  • погрешности в питании;
  • нарушение функции жевания, например, при стоматологических заболеваниях или малоподвижности пациента.

Прием пищеварительных ферментов с заместительной целью помогает избежать вздутия живота, жидкого стула, болей в животе. Кроме того, при тяжелых хронических заболеваниях поджелудочной железы Микразим полностью принимает на себя функцию по расщеплению питательных веществ. Поэтому они могут беспрепятственно усваиваться в кишечнике. Это особенно важно для детей, страдающих муковисцидозом.

Ферменты – биологические катализаторы. Значение ферментов

Определение ферментов

Ферменты – это белковые молекулы, которые синтезируются живыми клетками. В каждой клетке насчитывается более сотни различных ферментов. Роль ферментов в клетке колоссальна. С их помощью химические реакции идут с высокой скоростью, при температуре, подходящей для данного организма.

То есть ферменты – это биологические катализаторы, которые облегчают протекание химической реакции и за счет этого увеличивают её скорость. Как катализаторы они не изменяют направление реакции и не расходуются в процессе реакции.

Ферменты-биокатализаторы – вещества, увеличивающие скорость химических реакций.

Без ферментов все реакции в живых организмах протекали бы очень медленно и не могли бы поддерживать его жизнеспособность.

Наглядный пример работы ферментов – сладковатый вкус во рту, который появляется при пережевывании продуктов, содержащих крахмал (например, риса или картофеля). Появление сладкого вкуса связано с работой фермента амилазы, которая присутствует в слюне и расщепляет крахмал (рис. 1). Крахмал является полисахаридом, и сам по себе безвкусный, но продукты расщепления крахмала (моносахариды) с меньшей молекулярной массой (декстрины, мальтоза, глюкоза) сладкие на вкус.

Рис. 1. Механизм действия амилазы

Все ферменты – глобулярные белки с третичной или четвертичной структурой. Ферменты могут быть простыми, состоящими только из белка, и сложными.

Сложные ферменты состоят из белковой и небелковой части (белковая часть – апофермент, а добавочная небелковая – кофермент). В качестве кофермента могут выступать витамины – E, K, B групп (рис. 2).

Рис. 2. Классификация ферментов по их составу

Фермент взаимодействует с субстратом, не всей молекулой, а отдельной её частью – т. н. активным центром.

Механизм действия ферментов

Фермент взаимодействует с субстратом и образует короткоживущий фермент-субстратный комплекс. По завершении реакции, фермент-субстратный комплекс распадается на продукты и фермент. Фермент в итоге не изменяется: по окончании реакции он остается таким же, каким был до неё, и может теперь взаимодействовать с новой молекулой субстрата (рис. 3).

Рис. 3. Механизм взаимодействия фермента и субстрата

На рисунке 3 представлен механизм работы фермента, в частности, образования пептидной связи между молекулами аминокислот. Две аминокислоты взаимодействуют между собой в активном центре фермента, между ними образуется пептидная связь. Новое вещество (дипептид) покидает активный центр фермента, поскольку оно по своей структуре не соответствует этому центру.

Особенностью ферментов является то, что они обладают высокой специфичностью, т. е. могут ускорять только одну реакцию или реакции одного типа.

В 1890 году Э. Г. Фишер предположил, что эта специфичность обусловлена особой формой молекулы фермента, которая точно соответствует форме молекулы субстрата. Эта гипотеза получила название «ключа и замка», где ключ сравнивается с субстратом, а замок – с ферментом. Гипотеза гласит: субстрат подходит к ферменту, как ключ подходит к замку. Избирательность действия фермента связана со строением его активного центра (рис. 4).

Рис. 4. Гипотеза взаимодействия фермента и субстрата по принципу ключ-замок Э. Г. Фишера

Активность ферментов

В первую очередь, на активность фермента влияет температура. С повышением температуры скорость химической реакции возрастает. Увеличивается скорость молекул, у них появляется больше шансов столкнуться друг с другом. Следовательно, увеличивается вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность фермента – оптимальная.

За пределами оптимальной температуры скорость реакции снижается вследствие денатурации белков. Когда температура снижается, скорость химической реакции тоже падает. В тот момент, когда температура достигает точки замерзания, фермент инактивируется, но при этом не денатурирует (см. видео).

В наше время для длительного хранения продуктов широко используют способ быстрого замораживания. Оно останавливает рост и развитие микроорганизмов, а также инактивирует ферменты, находящиеся внутри микроорганизмов, и предотвращает разложение продуктов питания.

Кроме этого, активность ферментов зависит ещё от pH среды (кислотности – то есть показателя концентрации ионов водорода).

В большинстве случаев, ферменты работают при нейтральном pH, т. е. при pH около 7. Но существуют ферменты, которые работают либо в кислой и сильнокислой, либо в щелочной и сильнощелочной среде. Например, один из таких ферментов – пепсин, он находится у нас с вами в желудке, работает в сильнокислой среде и расщепляет белки. Поскольку в желудке среда достаточно кислая, 1,5 – 2 pH, то этот фермент работает при сильнокислой среде.

Ферменты подвержены действию активаторов и ингибиторов. Некоторые ионы, например, ионы металлов Mg, Mn, Zn активируют ферменты. Другие же ионы (к ним относятся ионы тяжелых металлов, а именно Hg, Pb, Cd), наоборот, подавляют активность ферментов, денатурируют их белки.

Классификация ферментов

В 1961 году была предложена систематическая классификация ферментов на 6 групп. Но названия ферментов оказались очень длинными и трудными в произношении, поэтому ферменты принято сейчас именовать с помощью рабочих названий. Рабочее название состоит из названия субстрата, на который действует фермент, и окончания «аза» (рис. 5). Например, если вещество — лактоза, то есть молочный сахар, то лактаза – это фермент который его преобразует. Если сахароза (обыкновенный сахар), то фермент, который его расщепляет, – сахараза. Соответственно, ферменты, которые расщепляют протеины, носят название протеиназы.

Значение ферментов

Ферменты применяются практически во всех областях человеческой деятельности, и такое широкое применение, в первую очередь, связано с тем, что они сохраняют свои уникальные свойства вне живых клеток.

Ферменты групп амилаз, протеаз и липаз применяются в медицине. Они расщепляют крахмал, белки и жиры. Все эти ферменты, как правило, входят в состав комбинированных препаратов, таких как фестал и панзинорм, и используются, в первую очередь, для лечения заболеваний желудочно-кишечного тракта (рис. 6).

Ферменты применяют для растворения тромбов в кровеносных сосудах, при лечении гнойных ран.

Особое место занимает энзимотерапия при лечении онкологических заболеваний.

Такие ферменты как амилаза расщепляют крахмал и поэтому широко используются в пищевой промышленности. В пищевой промышленности используется протеиназа, расщепляющая белки, и липазы, расщепляющие жиры. Ферменты амилазы используются в хлебопечении, виноделии и пивоварении (см. видео).

Протеазы используются для смягчения мяса и при изготовлении готовых каш.

Липазы используются в производстве сыра.

Ферменты широко используются в косметической промышленности, входят в состав кремов, некоторые ферменты входят в состав стиральных порошков.

Энзимопатология

Энзимопатология – область энзимологии, которая изучает связь между болезнью и недостаточным синтезом, или отсутствием синтеза какого-либо фермента.

Например, причиной наследственного заболевания – фенилкетонурии, которое сопровождается расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение фенилаланина в тирозин.

В результате в организме накапливаются токсические вещества. Новорожденный ребенок выглядит здоровым, а первые симптомы фенилкетонурии проявляются в возрасте от двух до шести месяцев. Это выраженная вялость, отсутствие интереса к окружающему миру, повышенная раздражительность, а также беспокойство и рвота.

Во втором полугодии жизни у ребенка выражено отставание в психическом развитии. Менее чем в 10% случаев – это слабая степень олигофрении, а у 60% развивается идиотия.

При своевременной диагностике патологических изменений можно избежать, если с момента рождения до наступления полового созревания ограничить поступление фенилаланина с пищей.

Стиральные порошки с ферментами

На этом уроке мы с вами выяснили, что ферменты используются в различных областях человеческой деятельности.

Они широко используются в пищевой промышленности, в медицине, в косметике и бытовой химии. Например, в стиральные порошки добавляют амилазу, которая расщепляет крахмал, протеазы, расщепляющие белки или белковые загрязнения, и липазы, очищающие ткани от жира и масла. Как правило, в состав стирального порошка входит комбинация этих ферментов, то есть ферментные препараты усиливают действие друг друга.

Сегодня наиболее изученными ферментами являются протеазы и амилазы. Липазы не всегда стабильны по качеству. Их разработкой занимаются только 10 лет, а амилаза и протеаза существуют на рынке уже более полувека. Сегодня эти две категории ферментов очень хорошо изучены и дают прекрасные результаты, чего пока что нельзя сказать о липазах. Липазы полностью справляются с загрязнениями только после двух-трех стирок, а протеазы и амилазы – за одну.

Ученые подсчитали, что добавление ферментов в стиральные порошки на 30-35% увеличивает моющую способность данного порошка.

Из истории открытия ферментов

Ферменты были открыты при изучении процессов брожения. Представления о том, что химические процессы внутри живых организмов протекают под действием каких-то особенных веществ, возникло более 200 лет назад. В XIX века Луи Пастер (рис. 7) доказал, что сбраживание дрожжами сахара в спирт катализируется веществами белковой природы. Пастер ошибочно считал, что ферменты неотделимы от живых клеток. Другой ученый, Эдуард Бухнер, доказал, что в водных экстрактах живых клеток находится набор ферментов, катализирующих превращение сахара в спирт. Именно его открытие дало начало новой науке – энзимологии.

Успехи энзимологии во второй половине XX века привели к тому, что в настоящее время выделено и очищено более 2000 ферментов, которые используются в различных отраслях человеческой деятельности.

Домашнее задание

1. Что такое фермент?

2. Как ферменты работают?

3. Как ферменты получают имена? Назовите известные вам группы ферментов.

4. Назовите ученых, которые внесли особый вклад в дело изучения ферментов.

5. К какому уровню организации можно отнести ферментативный катализ?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал Biochemistry.ru (Источник).

2. Биология (Источник).

3. Интернет-портал Chem.msu.su (Источник).

4. YouTube (Источник).

5. Вкус жизни (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

Ферменты — это белки, которые в качестве биокатализатора контролируют и ускоряют биохимические реакции в организме, не изменяя себя. Они содержатся во всех клетках организма и необходимы для всех ее функций. Ферменты контролируют не только пищеварение, но и весь обмен веществ и, следовательно, являются важным фактором для здоровья. Прочитайте все, что важно об энзимах: определение, структура, функции и проблемы со здоровьем, связанные с энзимами!

Ферменты-что это такое?

В большинстве случаев ферменты в организме человека представляют собой гигантские молекулы, состоящие из белка, и они необходимы для жизни. В организме практически ничего не работает без ферментов. Функцией этих так называемых биокатализаторов является включение или ускорение биохимических реакций в клетках.

В таких реакциях, например, некоторые вещества (субстраты) разрушаются или преобразуются. Некоторые ферменты работают очень специфическим образом: они могут только связывать определенный субстрат и обеспечивать его химическое превращение. Другие реагируют с различными субстратами, но тесно связаны с одним типом реакции (см. Ниже: классы ферментов).

Ферменты часто могут развить свои эффекты, только если они активируются так называемым кофактором или несколькими кофакторами. Это могут быть ионы металлов (например, ионы железа или меди) или органические молекулы (например, витамины). Кофакторы временно или постоянно и постоянно связаны с ферментом. Во втором случае их также называют протезной группой.

Какова функция ферментов?

Ферменты включают и ускоряют почти все биохимические реакции в организме. Эти реакции включают широкий спектр метаболических процессов, а также «чтение» (транскрибирование) и удвоение (тиражирование) генетической информации.

В таких реакциях ферменты временно связываются с веществом, подлежащим реакции (субстратом), так что, например, оно может быть разрушено или иным образом изменено.

Сами ферменты остаются неизменными. Однако они гарантируют, что энергия, необходимая для реакции (энергия активации), уменьшается. На самом деле, большинство химических процессов в клетках требуют такой высокой энергии активации. И они не могут происходить очень медленно при преобладающей температуре окружающей среды (внутренняя температура тела около 37 градусов Цельсия). Снижая энергию активации, ферменты делают такие реакции возможными или ускоренными в достаточной степени.

Группы ферментов

Ферменты можно разделить на шесть основных групп, в зависимости от типа химической реакции, которую они катализируют. Эти классы ферментов (и некоторые из их подгрупп):

  1. Оксидоредуктазы: они катализируют реакции, в которых переносятся электроны (окислительно-восстановительные реакции); например, дегидрогеназы, оксидазы, редуктазы, каталазы.
  2. Трансферазы: они катализируют реакции, в которых целые функциональные группы (такие как фосфатная группа) переносятся из одной молекулы в другую; например, транс-миназы, киназы, ДНК-полимеразы.
  3. Гидролазы: они катализируют реакции, в которых химическая связь либо образуется когда вода выходит, либо расщепляется под удержанием воды; например, пептиды, фосфатазы, протеазы.
  4. Лиазы: они катализируют реакции, в которых химические связи расщепляются или образуются без потребления энергии.
  5. Изомеразы: они гарантируют, что отношения связи внутри молекулы перестроены; например, рацемазы, топоизомеразы.
  6. Лигазы (синтетазы): они катализируют реакции, в которых две молекулы соединяются друг с другом с помощью энергии; например, карбоксилазы.

Какие существуют виды ферментов?

Ниже вы найдете небольшой выбор важных ферментов, их возникновение и задачи.

имя вхождение задачи
Лизоцим слюна расщепляет определенные строительные блоки бактериальных клеточных стенок и таким образом убивает патогенные микроорганизмы (бактерицидный эффект)
Амилазы, липазы, протеазы Рот и поджелудочная железа, желудочный сок и кишечные выделения Переваривание углеводов (амилаз), жиров (липаз) и белков (протеаз)
Глутамат оксалоацетат трансаминаза Печень , сердце и скелетные мышцы, почки и легкие ускоряет метаболизм аминокислот (строительные блоки белков)
Глутамат-пируваттрансаминаза печень Расщепление белка в клетках печени
Kреатинкиназа Мышечные клетки и мозг Энергообеспечение
Щелочная фосфатаза в клетках и жидкостях организма, особенно в печени, желчных протоках и костях расщепляет так называемые эфиры фосфорной кислоты, уровень их крови, дает информацию о заболеваниях печени и желчевыводящих путей
Лейцин-аминопептидаза Кишечник , почки, желчь , желудочный сок, слюна, плазма Важно для белкового обмена
Гамма-глутамилтрансфераза особенно в почках (меньше в поджелудочной железе, селезенке , печени и тонкой кишке ) Перенос аминокислот
Сорбитолдегидрогеназа, сукцинатдегидрогеназа печень Превращение сорбита в фруктозу
Лактатдегидрогеназа во всех клетках всех органов Брожение молочной кислоты для энергии
Холинэстераза Сыворотка, кишечник, поджелудочная железа расщепляет так называемые холиновые соединения; показатель крови показывает, насколько хорошо печень может производить белки
Альдолаз 3 подгруппы: в области сердца и скелетных мышц; в нервах, щитовидной железе и жировой ткани; в печени, почках, тонкой кишке катализирует расщепление фруктозы.
Кислотные фосфатазы в крови , кости, спермы и секрета простаты Расщепляет эфиры фосфорной кислоты и катализирует трансфосфори-лирование

Какие проблемы могут вызывать ферменты?

Существуют различные врожденные дефекты ферментов, некоторые из которых могут иметь серьезные последствия. Одним из примеров является порфирия: это группа метаболических заболеваний, которые все идут рука об руку с нарушением образования гема эритроцитарной массы. Причина в том, что один или несколько ферментов, участвующих в образовании гема, имеют генетически обусловленное функциональное расстройство.

В зависимости от типа порфирии это может привести к различным симптомам, таким как колики в животе, рвота, хронический запор, лихорадка, перепады настроения, паралич или сердечно-сосудистые проблемы.

При врожденном метаболическом заболевании фенилкетонурия строительный блок белка фенилаланин не может быть разрушен из-за нарушения фермента. Поэтому он накапливается в организме. Это уже заметно в детстве: избыток фенилаланина влияет на развитие мозга. Последствиями являются умственная отсталость, медленное физическое развитие и судороги.

Удивительная женщина, мать и, конечно же, одна из самых ярких представительниц российского шоу-бизнеса Ирина Дубцова сегодня расскажет вам о том, как ей удалось сбросить вес. Эксклюзивное откровение только на нашей странице. Итак…

Так называемая галактоземия очень опасна, но, к счастью, встречается редко: и здесь это ферментативно обусловленное нарушение метаболизма сахара. В организме пострадавших не хватает ферментов для переработки галактозы. Сахар может всасываться в кровь через кишечную стенку, но не может быть переработан дальше. Так он накапливается в крови.

Поскольку лактоза также присутствует в грудном молоке, у кормящих детей, которые уже страдают непереносимостью лактозы, проявляются такие симптомы, как рвота, диарея и неспособность развиваться. Если они будут продолжать получать галактозу вместе с пищей, они могут получить серьезные повреждения и даже смерть.

При непереносимости лактозы организм не вырабатывает достаточное количество фермента лактазы. В результате молочный сахар (лактоза) не может расщепляться в тонкой кишке и, следовательно, не может всасываться в кровь. Вместо этого он продолжает поступать в толстую кишку, где он метаболизируется бактериями. Среди прочего, это может вызвать боль в животе, вздутие живота и диарею.

Гистамин нетерпимости . Вещество гистамин естественно встречается в организме. Кроме того, определенные продукты могут увеличить количество гистамина в организме. Некоторые люди реагируют на это реакциями с непереносимостью ( зуд , крапивница, учащенное сердцебиение и т. Д.). Ферменты, которые необходимы для расщепления гистамина, могут быть недоступны в достаточных количествах или их функция может быть нарушена.

Об этом тексте

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх